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Abstract

This work overcomes the difficulty of dealing with large curvatures in a high order matched interface and boundary
(MIB) method proposed for solving elliptic interface problems. The MIB method smoothly extends the solution across
the interface so that standard high order central finite difference schemes can be used without the loss of accuracy. One
feature of the MIB is that it disassociates the discretization of the elliptic equation from the enforcement of interface jump
conditions. The other is to make iterative use of only the lowest order jump conditions to determine the fictitious values on
extended domains. It is of arbitrarily high order in convergence, in principle. However, its applicability was hindered by the
lack of sufficiently many grid points to determine all the fictitious values required for high order schemes at the location
where the curvature of the interface is relatively large. We remove this obstacle by introducing a new concept, the disas-
sociation between the discretization and the domain extension. We show that the improved MIB method is robust for han-
dling general irregular interfaces by extensive numerical experiments on the Poisson equation and the Helmholtz equation.
To better understand the MIB method and other potential high order interface schemes, we propose an alternative inter-
polation formulation of the MIB method and show that the new formulation is essentially equivalent to the improved one.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

This work is a continuation of authors’ effort to develop high order numerical methods for solving elliptic
interface problems
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with Dirichlet boundary condition at oX on regular Cartesian grids. Here, the computational domain X is as-
sumed to be regular, such as rectangle in two dimensions (2D) or parallelepiped in three dimensions (3D). The
elliptic interface problems are distinguished by an interface C in domain X, where locates the discontinuity of
the coefficient function b(x) of the equation. The source term q(x) may be singular at the interface. For the
existence and the regularity of the solution to this equation, the reader is referred to Ref. [6]. The main con-
clusion of the analysis is that the elliptic interface problem is otherwise unsolvable unless it is supplemented
from the underlying physics with two jump conditions across the interface C
½u� ¼ uþðXðsÞÞ � u�ðXðsÞÞ ¼ /ðsÞ; ½bun� ¼ bþuþn ðXðsÞÞ � b�u�n ðXðsÞÞ ¼ wðsÞ; ð2Þ
where X(s) is a point on the interface C which is parametrized with arc-length s, and n is the unit outer normal
vector. The superscript � or + denotes the limiting value of a function from one side or the other of the inter-
face. A simple Cartesian grid is preferred in our study since the complicated procedure of generating unstruc-
tured grid could be bypassed and well developed fast algebraic solvers could be utilized. Attaining highly
accurate numerical solutions to these problems with standard numerical methods is subject to the constraint
of the low global regularity of the solution. In fact, traditional numerical methods are usually constructed with
the assumption that the solution has enough regularity, which is not true due to the interface jumps. Never-
theless, by delicate use of interface jump conditions, it is possible to formulate special interface schemes that
are accurate and efficient.

Peskin pioneered an immersed boundary method (IBM) [28–30] in modeling blood flows in heart, where the
singular source at the time-varying boundary is regularized by using discrete delta functions [28,30]. The sin-
gularity of the problem is then removed and standard discretization methods become applicable. Although the
original IBM is only of first order in convergence, it has been extensively used in engineering computations due
to its simplicity, efficiency and robustness [9,13,19]. High order generalization of the IBM has been achieved
by Peskin and his coworkers [15,23]. By choosing some sophisticate discrete delta functions with a narrow sup-
port, Tornberg and Engquist [32] proposed a globally fourth-order scheme for problems with singular sources
at the interface. Since Peskin’s pioneer work, the importance of the elliptic interface problem has been well
established in a variety of disciplines, such as fluid dynamics, molecular biology, electromagnetics and material
science.

A major progress in the field was due to LeVeque and Li who proposed the immersed interface method
(IIM) [24]. The IIM is one of the most popular schemes which are designed to preserve interface jumps in solv-
ing elliptic equations. By defining polynomials up to the second order at each side of the interface, the IIM is
of second order in convergence, although its local truncation error at irregular points is of O(h). The original
IIM has been improved in many aspects, such as the preservation of discrete maximum principle [26], a mul-
tigrid method [1] and a fast algorithm if the problem comes with piecewise constant coefficient [25]. The cou-
pling of the IIM with the level set approach to deal with moving interfaces has also been established [7,31]. The
IIM has been successfully applied to a number of important problems [18,20,22,33]. It will be interesting to
show that a higher order IIM can be constructed following the IIM procedure.

Another important technique that does not suffer from the numerical smearing of discontinuity at the inter-
face is the ghost fluid method (GFM) proposed by Osher and co-workers [10]. In the GFM, interface jump
conditions are captured, i.e., the interface jump conditions are applied on the nearest grid points of an inter-
face, instead of at the exact interface position. This treatment gives rise to a symmetric matrix for the associ-
ated linear system, and thus many advanced linear solvers could be taken advantage of. The GFM is simple
and easy to use for complex interfaces.

An important application of interface methods is the treatment of elliptic problems defined in an irregular
domain [8,11,21]. By embedding the irregular domain into a slightly larger while regular domain, one ends up
with a pseudo interface problem, in the sense that at the interface, i.e., the real irregular boundary, there is only
one condition coming from the original definition of the problem, whereas for genetic elliptic interface prob-
lems there are two interface jump conditions. Because the solution outside the interface is not of interest and is
often trivial, as given by the Dirichlet condition, such a pseudo interface problem is relatively easy to solve. In
such a case, one can simply adopt high order extrapolation techniques to find the special discretization near
the boundary [14]. It has been shown by Gibou and Fedkiw [14] that using linear, quadratic or cubic
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extrapolation, one could attain, respectively second, third and fourth-order boundary schemes for certain
irregular boundary shapes.

Apart from the IBM, IIM and GFM, many other interesting approaches have been proposed in the liter-
ature, such as the finite element method [2,5,17], discontinuous Galerkin approach [16], integral equation
approach [27] and others [3,4].

The matched interface and boundary (MIB) technique, originally proposed in [34], is the first method which
provides a systematic approach to generate finite difference schemes of arbitrarily high orders for interface
problems in computational electromagnetics. For elliptic interface problems, the MIB can be regarded as a
higher-order generalization of the IIM and the GFM. In the MIB technique, the solution on each side of
the interface is smoothly extended beyond the interface by means of fictitious domains. As a result, standard
high order central finite difference discretization can therefore be applied on the fictitious domains without the
loss of accuracy. The fictitious values on fictitious domains are determined simultaneously from enforcing the
interface jump conditions at the exact position of the interface. The MIB method iteratively uses the lowest
order interface jump conditions so that sufficiently many fictitious values can be determined to support higher
order schemes. For straight interfaces, MIB schemes of up to 16th order have been constructed [34,35]. For
curved interfaces, up to sixth-order schemes have been demonstrated [35]. The nature of high accuracy, the
robustness against large jumps in coefficients, and the flexibility in treating complex interfaces have been
examined by extensive numerical experiments. Key ingredients that are crucial to the success of the MIB
method are two concepts. One is the disassociation of the discretization of the differential equation from
the implementation of interface jump conditions. The other is the iterative use of lowest order jump condi-
tions. However, authors’ attempt to formulate high order schemes for general curved interfaces is hindered
by the difficulty that there are no sufficient grid points at certain curved interface locations to determine suf-
ficiently many fictitious values required for high order schemes [35]. Consequently, although the original MIB
method is of arbitrarily high order in principle, it cannot be implemented beyond the second order for inter-
faces with large curvatures.

The objective of the present work is to overcome the aforementioned difficulty of the MIB method by intro-
ducing a new concept, i.e., the disassociation of the discretization of the differential equation from the exten-
sion of the solution across the interface. Specifically, in the original MIB method [35], fictitious values are
determined along the direction of each discretization. Consequently, situations arise that there are no sufficient
grid points along the discretization direction to support high order schemes near the interface where the cur-
vature is large. In the present procedure, we first identify irregular grid points (i.e., fictitious domains) near the
interface according to the need of a high order discretization scheme. We then smoothly extend the solution
across the interface onto the fictitious domain disregarding the origin of each irregular grid point, by the iter-
ative use of lowest order jump conditions. Finally, we discretize the differential equation across the interface
with the fictitious values. With this new procedure, we show that the improved MIB is indeed arbitrarily high
order for general curved interface and boundary. We also propose an alternative interpolation formulation of
the MIB method without the explicit use of fictitious domains. We show that the new formulation is essentially
equivalent to the improved fictitious domain formulation. It is believed that this alternative formulation not
only offers a better understanding of the MIB method, but also provides insights into other similar high order
interface methods that might be constructed.

The rest of this paper is organized as follows. In Section 2, we review the essential ideas of the fictitious
domain formulation of the MIB method. The difficulty in the domain extension is discussed and the new con-
cept, i.e., the disassociation of the domain extension from the discretization, is introduced. Section 3 is devoted
to the new interpolation formulation of the MIB method. A comparison between two formulations is given.
The numerical experiments of the proposed MIB method are carried out in Section 4. We demonstrate the first
observation of fourth-order convergence for a variety of general curved elliptic interface problems. This paper
ends with a conclusion.

2. Fictitious domain formulation

In this section, we present a brief description of the MIB method via the fictitious domain formulation. The
existing difficulty in constructing high order interface schemes is analyzed and its remedy is proposed.
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2.1. Basic formalism

It is illustrative to present the MIB method with a simple 1D elliptic interface equation
ðbuxÞx � ju ¼ qðxÞ; x 2 ½0; 1�; ð3Þ

with two interface jump conditions accompanying the discontinuity of coefficient b at x = a 2 (0, 1)
½u� ¼ uþ � u� ¼ /; ½bux� ¼ bþuþx � b�u�x ¼ w; ð4Þ

which is to be solved on a uniform mesh of size Dx = h. To simplify the presentation we assume b is piecewise
constant while the MIB scheme for general piecewise continuous b is almost identical. Let xi and xi + 1 be two
grid points closest to the interface at x = a, as in Fig. 1, the application of conventional finite difference
schemes over the interface is problematic. For example, (ui + 1 � ui)/h is of O(1/h), i.e., divergent, due to the
finite jump [u] at x = a. The MIB method, like many other interface methods, manages to improve the con-
vergence by incorporating interface conditions into the numerical discretization. In particular, with the MIB,
the solutions on two subdomains separated by the interface will be smoothly and simultaneously extended
using two interface conditions. The numerical difference can then be carried out on smoothly extended sub-
domains. The length of this extension depends on the width of the discretization stencil of a given central finite
difference scheme, because only the discretization at nodes near the interface will involve grid points in the
other subdomain. If a fourth-order central difference scheme is chosen as the basic difference scheme, we ex-
pect the second-order derivative uxx at points xi� 1, xi, xi + 1 and xi + 2 to be discretized as
uxx ¼ �
fiþ1

12h2
þ 4ui

3h2
� ui�1

4h2
þ 4ui�2

3h2
� ui�3

12h2
at xi�1; ð5Þ

uxx ¼ �
fiþ2

12h2
þ 4f iþ1

3h2
� ui

4h2
þ 4ui�1

3h2
� ui�2

12h2
at xi; ð6Þ

uxx ¼ �
uiþ3

12h2
þ 4uiþ2

3h2
� uiþ1

4h2
þ 4f i�1

3h2
� fi�2

12h2
at xiþ1; ð7Þ

uxx ¼ �
uiþ4

12h2
þ 4uiþ3

3h2
� uiþ2

4h2
þ 4uiþ1

3h2
� fi

12h2
at xiþ2; ð8Þ
where fi + 1 and fi + 2 are the extension of the solution in the left subdomain to xi + 1 and xi + 2, respectively. Sim-
ilarly, the solution in the right subdomain need to be continued to points xi and xi� 1, which are represented as
fi and fi� 1. Here fi� 1 through fi + 2 are referred as fictitious values, to distinguish them from solution values ui

through ui + 2 defined on the same set of grid points. These fictitious values will be related to solution values by
appropriate implementation of the interface conditions, which can be regarded as the governing equations for
fictitious values in this sense.

In the MIB, these four fictitious values are solved via iterative use of the interface conditions as only two
can be solved from two interface conditions. Since b is a piecewise constant as assumed above, we could first
solve fi and fi + 1 from
Fig. 1. Illustration of fictitious values for 1D problem.
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wþ0;ifi þ
Xiþ4

k¼iþ1

wþ0;kuk

 !
�

Xi

k¼i�3

w�0;kuk þ w�0;iþ1fiþ1

 !
¼ /; ð9Þ

bþ wþ1;ifi þ
Xiþ4

k¼iþ1

wþ1;kuk

 !
� b�

Xi

k¼i�3

w�1;kuk þ w�1;iþ1fiþ1

 !
¼ w; ð10Þ
and then solve fi� 1 and fi + 2 from
wþ0;i�1fi�1 þ wþ0;ifi þ
Xiþ4

k¼iþ1

wþ0;kuk

 !
�

Xi

k¼i�3

w�0;kuk þ w�0;iþ1fiþ1 þ w�0;iþ2fiþ2

 !
¼ /; ð11Þ

bþ wþ1;i�1fi�1 þ wþ1;ifi þ
Xiþ4

k¼iþ1

wþ1;kuk

 !
� b�

Xi

k¼i�3

w�1;kuk þ w�1;iþ1fiþ1 þ w�1;iþ2fiþ2

 !
¼ w; ð12Þ
where Eqs. (9) and (10) are the approximation of jump conditions (4), wþ0;: and w�0;: are the interpolation coef-
ficients on the respective subdomain, and wþ1;: and w�1;: are the first-order finite difference coefficients. Once
being solved as the linear combinations of ui� 1, . . . ,ui + 2,/ and w, fictitious values fi and fi + 1 become known
values in Eqs. (11) and (12) from which other two fictitious values fi� 1 and fi + 2 are also solved. See Refs.
[34,35] for the general expressions of fictitious values and difference schemes, as well as the generalization
of above derivation to a 2D domain. The standard interpolation weights and finite difference coefficients in
these schemes can be calculated using Fornberg’s method [12].

In addition to the convergence rate of the scheme, we are also interested in the relation between the accu-
racy of the MIB scheme and the magnitude of the jump in diffusion coefficient b. Considering a second-order
MIB scheme for which only one fictitious value is defined in either side of the interface, i.e., fi and fi + 1, the
interface conditions (4) can be approximated by
ðwþ0;ifi þ wþ0;iþ1uiþ1 þ wþ0;iþ2uiþ2Þ � ðw�0;i�1ui�1 þ w�0;iui þ w�0;iþ1fiþ1Þ ¼ /; ð13Þ
bþðwþ1;ifi þ wþ1;iþ1uiþ1 þ wþ1;iþ2uiþ2Þ � b�ðw�1;i�1ui�1 þ w�1;iui þ w�1;iþ1fiþ1Þ ¼ w: ð14Þ
On the other hand, interface conditions (4) can also be approximated by using the exactly extended values uþi
and u�iþ1, respectively defined at xi and xi + 1
ðwþ0;iuþi þ wþ0;iþ1uiþ1 þ wþ0;iþ2uiþ2 þ Cþ0 h3Þ � ðw�0;i�1ui�1 þ w�0;iui þ w�0;iþ1u�iþ1 þ C�0 h3Þ ¼ /; ð15Þ
bþðwþ1;iuþi þ wþ1;iþ1uiþ1 þ wþ1;iþ2uiþ2 þ Cþ1 h2Þ � b�ðw�1;i�1ui�1 þ w�1;iui þ w�1;iþ1u�iþ1 þ C�1 h2Þ ¼ w; ð16Þ
where C�0 ;C
þ
0 ;C

�
1 and Cþ1 are the coefficients of the leading truncation errors. Note that fictitious values fi and

fi + 1 are the approximation to the exact values uþi and u�iþ1 on fictitious domains, respectively. Denote the dif-
ference between these fictitious values and the extended exact values as �i and �i + 1, i.e.,
�i ¼ uþi � fi; ð17Þ
�iþ1 ¼ u�iþ1 � fiþ1: ð18Þ
By subtracting Eq. (13) from Eq. (15), and Eq. (14) from Eq. (16), we notice that �i and �i + 1 satisfy the fol-
lowing two equations
wþ0;i�i � w�0;iþ1�iþ1 ¼ ðC�0 � Cþ0 Þh3; ð19Þ
bþwþ1;i�i � b�w�1;iþ1�iþ1 ¼ ðb�C�1 � bþCþ1 Þh2: ð20Þ
It can be solved that
�i ¼
�b�ðC�0 � Cþ0 Þw�1;iþ1h3 � w�0;iþ1ðC�1 b� � Cþ1 bþÞh2

�b�wþ0;iw
�
1;iþ1 þ bþwþ1;iw

�
0;iþ1

: ð21Þ
Since w�0;iþ1 � Oð1Þ;wþ0;i � Oð1Þ;w�1;iþ1 � Oð1=hÞ and wþ1;i � Oð1=hÞ, it follows that �i � O(h3). Moreover,
since
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�i ¼
�ðC�0 � Cþ0 Þw�1;iþ1h3 � w�0;iþ1ðC�1 � Cþ1

bþ

b�Þh
2

�wþ0;iw
�
1;iþ1 þ bþ

b� wþ1;iw
�
0;iþ1

; ð22Þ
as b+/b� increasing, �i approaches asymptotically to C(h3), where constant C depends only on Cþ1 and wþ1;i. In
other words, for large jumps of the coefficient, the approximation error depends only on the solution of the
problem. This proves that the present method is robust against the large contrast of b at the interface.

2.2. Subtleness in domain extensions

In 2D, our previous MIB method in [35] did not specify in sufficient details how to determine fictitious val-
ues for a given topology of irregular points. In fact, we have learned that this is a subtle issue. A computational
practice used in [35] is to solve a fictitious value along the direction of discretization. This is based on the fol-
lowing understanding: A fictitious value is required because the need for a smooth continuation in a particular
discretization in either the x- or the y-direction. As a fictitious value at a given point varies when it is obtained
via smooth extension from different directions, a fictitious value is regarded as a smooth continuation only in
the direction associated with the original discretization. According to this association between the domain
extension and the discretization, fi + 1,j should only be solved along the x-direction, see Fig. 2. Similarly, fi,j�1

should be determined twice, along the x- and y-directions, respectively. Unfortunately, fi,j�1 cannot be solved
along the y-direction up to fourth-order accuracy due to the large curvature in Fig. 2. It is this difficulty that
has severely constrained the applicability of the MIB scheme in Ref. [35], where only one generic elliptic inter-
face problem with relatively low curvatures was solved up to fourth-order accuracy.

A close look at the fictitious values in Figs. 2 and 3 reveals that a fictitious value must fall into one of the
following five categories:

1. That can be solved only along one of the x- and y-directions and will be used for the discretization along the
same direction.

2. That can be solved only along one of the x- and y-directions, but will be used for the discretization along
the other direction.

3. That can be solved only along one of the x- and y-directions, and will be used for the discretization along
both directions.

4. That can be solved along both the x- and y-directions, and will be used for the discretization along either
one, or both directions.

5. That cannot be solved along any direction, but will be used for the discretization along one or both
directions.
i i+1 i+2i–1i–2i–3

j–2

j–1

j

j+1

j+2

j+3

y

x

Fictitious value fi,j + 2 shall be used for the discretization of uy, uyy at grid point (i, j + 1). However, fi,j + 2 cannot be solved along the
tion but it can be solved along x-direction, i.e., solved together with fictitious values fi� 2,j + 2, fi� 1,j + 2 and fi + 1,j + 2.



Fig. 3. The distribution of fictitious points (stars) for a 40 · 40 mesh with irregular interface. Each fictitious domain roughly has two
layers of fictitious points, supporting a fourth-order central difference scheme. The green stars represent the smooth continuation of the
interior subdomain and the red stars denote the smooth continuation of the outer subdomain. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
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It is seen that a fictitious value in either the second, the third or the fifth category would be deemed as
unsolvable. In Fig. 2, for example, to find four fictitious values fi,j, . . . , fi,j + 3 along the y-direction, grid points
(xi,yj� 2) through (xi,yj + 1) are supposed to be on same side of the interface, whereas the other four grid points,
(xi,yj + 2) through (xi,yj + 5), must be on the other side. Similarly, to find four fictitious values fi,j� 2, . . . , fi,j + 1,
by considering the extension in the y-direction, we need points (xi,yj� 4) through (xi,yj� 1) on one side and
(xi,yj) through (xi,yj + 3) on the other side. It is obvious that the distribution of grid points with respect to
the interface in Fig. 2 does not satisfy these requirements. In particular, it is unable to find fictitious values
fi,j� 2 through fi,j + 3 by the extension in the y-direction along ith mesh line, since there are only two grid points
in one subdomain on that mesh line. According to the above discussion, however, at least four grid points in
either subdomain are needed in order to define a fourth-order extension. These fictitious values can be clas-
sified into the third type, and were unsolvable by using the practice of Ref. [35].

In this work, we introduce a new concept, the disassociation of the domain extension from the discretiza-
tion. This concept is motivated by the following error analysis. If the approximation errors of fictitious values
at a given point (xi,yj) obtained from the x- and y-directions are both of O(hn) for a positive n, their difference
must be of O(hn). Therefore, a fictitious value at an irregular point (xi,yj), regardless the direction in its cal-
culation, can be used for the discretization in any direction involving the grid point without the loss of accu-
racy. For example, fictitious values fi,j through fi,j + 3 are essentially the extension of the inner or the outer
subdomain. Although they cannot be calculated through the extension in the y-direction, they indeed can
be obtained by the extension in the x-direction. Particularly, one can show that fi,j + 2 can be calculated con-
sidering the extension along (j + 2)th horizontal mesh line. The known fi,j + 2 can be used to facilitate the dis-
cretization, not only for ux and uxx at (xi� 2,yj + 2) and (xi� 1,yj + 2), respectively, but also for uy and uyy at
(xi,yj) and (xi,yj + 1), respectively. This new understanding makes it possible to solve the fictitious values of
the second and third types, and significantly broadens the applicability of the MIB method to general interface
geometry.

For the fictitious values of the fourth type, i.e., those that can be extended in both the x- and y-directions,
such as fi� 1,j� 2, fi� 1,j + 3 in Fig. 2, we may attain their values in the most convenient manner and use them for
necessary discretization.

Finally, fictitious values of the fifth type may be made available in most cases by refining the mesh. For
example, if there are only four grid points inside a circular interface, fictitious values cannot be solved for
all higher order schemes, i.e., orders higher than two, on such a grid. However, when the grid size is doubled
in both directions, the fourth order fictitious values can be obtained. For this reason, the present MIB method
is a robust high order approach for all curved interfaces.

It was claimed in Ref. [35] that the proposed MIB scheme is of arbitrarily high order in principle. Indeed,
the MIB procedure is systematic and it encompasses a variety of high order schemes. However, the high order
convergence was demonstrated only for an interface problem on a special geometry due to the association of
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the domain extension from the discretization. It is believed that with the present understanding and extension
technique, we are able to fully realize the high-order potential of the MIB method for arbitrarily curved
geometry.

3. Interpolation formulation

The MIB method described in the preceding section makes use of fictitious domains and values for the stan-
dard high order finite difference discretization of the governing equation near the interface. The fictitious val-
ues give a smooth continuation of the solution across the interface. Interface jump conditions are iteratively
used to determine fictitious values. In this section, the possibility of the smooth continuation in terms of poly-
nomial expansions is investigated. This interpolation formulation does not require the use of fictitious
domains and values. To illustrate the idea, we start our discussion with a 1D problem. The general principle
is then applied to 2D problems with curved interfaces. Particular attentions are paid to the relation between
these formulations.

3.1. One dimensional formalism

Consider the 1D elliptic problem given in Eq. (3). The interface is located at xi 6 a 6 xi + 1. In a second-
order central finite difference scheme, xi is the irregular point to the left of the interface, and xi + 1 the irregular
point to the right. On each side of the interface, we define a second-order polynomial
u�ðxÞ ¼ a�0 þ
a�1
h
ðx� xiÞ þ

a�2
h2
ðx� xiÞ2; ð23Þ

uþðxÞ ¼ aþ0 þ
aþ1
h
ðx� xiþ1Þ þ

aþ2
h2
ðx� xiþ1Þ2; ð24Þ
where the polynomial coefficients are scaled by h to reduce the condition number of the coefficient matrix.
Obviously, a�0 ¼ ui and aþ0 ¼ uiþ1 and the remaining four coefficients can be determined from the expansion
of the polynomials at two grid points, and from two interface jump conditions
� a�1 þ a�2 ¼ ui�1 � ui; ð25Þ
aþ1 þ aþ2 ¼ uiþ2 � uiþ1; ð26Þ
ð�aþ1 xr þ aþ2 x2

r Þ � ða�1 xl þ a�2 x2
l Þ ¼ /� uiþ1 þ ui; ð27Þ

bþðaþ1 � 2aþ2 xrÞ � b�ða�1 þ 2a�2 xlÞ ¼ hw; ð28Þ
where xl ¼ a�xi
h ; xr ¼ xiþ1�a

h . The first two Eqs. (25) and (26), are the realizations of u�(x) at xi� 1, and u+(x)
at xi + 2, respectively. The last two Eqs. (27) and (28), are the approximations of the interface jump con-
ditions with u�(x) and u+(x). Eqs. (25)–(28) essentially provide an algebraic system for the coefficients of
u�(x) and u+(x), whose solutions are the representations of those four polynomial coefficients in terms
of ui� 1, ui, ui + 1, ui + 2, / and w. These polynomial coefficients are solved by inverting the coefficient matrix
of equation
�1 1 0 0

0 0 1 1

�xl �x2
l �xr x2

r

�b� �2b�xl bþ �2bþxr

0
BBB@

1
CCCA

a�1
a�2
aþ1
aþ2

0
BBB@

1
CCCA ¼

ui�1 � ui

uiþ2 � uiþ1

/� uiþ1 þ ui

hw

0
BBB@

1
CCCA: ð29Þ
It can be seen from Eqs. (23) and (24) that u�x ðxiÞ ¼
a�

1

h ; u
�
xxðxiÞ ¼

2a�
2

h2 ; uþx ðxiþ1Þ ¼
aþ

1

h , and uþxxðxiþ2Þ ¼
2aþ

2

h2 . The
elliptic equation can therefore be approximated at irregular points by
b�
2a�2
h2
� jðxiÞui ¼ qðxiÞ at xi; ð30Þ

bþ
2aþ2
h2
� jðxiþ1Þuiþi ¼ qðxiþ1Þ at xiþ1; ð31Þ
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if b is piecewise constant. Otherwise the approximation equations would be
bxðxiÞ
a�1
h
þ bðxiÞ

2a�2
h2
� jðxiÞui ¼ qðxiÞ at xi; ð32Þ

bxðxiþ1Þ
aþ1
h
þ bðxiþ1Þ

2aþ2
h2
� jðxiþ1Þuiþi ¼ qðxiþ1Þ at xiþ1: ð33Þ
The constants in the representations of a�1 ; a
�
2 ; a

þ
1 and aþ2 in the above equations, i.e., the terms involving given

jumps / and w, should be moved to the right hand side. This finishes the establishment of a second-order inter-
polation scheme at both irregular points.

The above procedure can be easily generalized to construct higher order schemes. For example, to attain a
fourth order scheme at irregular points near the interface, one can start the formulation of the scheme by
defining a fourth-order polynomial on each side of the interface
u�ðxÞ ¼ a�0 þ
a�1
h
ðx� xiÞ þ

a�2
h2
ðx� xiÞ2 þ

a�3
h3
ðx� xiÞ3 þ

a�4
h4
ðx� xiÞ4; ð34Þ

uþðxÞ ¼ aþ0 þ
aþ1
h
ðx� xiþ1Þ þ

aþ2
h2
ðx� xiþ1Þ2 þ

aþ3
h3
ðx� xiþ1Þ3 þ

aþ4
h4
ðx� xiþ1Þ4: ð35Þ
The first two coefficients a�0 and aþ0 again have to be ui and ui + 1, respectively. The remaining eight coefficients
are to be determined by using two interface jump conditions, and by expanding these two polynomials at six
grid points, i.e., points xi� 1, xi� 2 and xi� 3 for Eq. (34), and points xi + 2, xi + 3 and xi + 4 for Eq. (35). We could
therefore end up with eight linear algebraic equations
�3 9 �27 81 0 0 0 0

�2 4 �8 16 0 0 0 0

�1 1 �1 1 0 0 0 0

0 0 0 0 1 1 1 1

0 0 0 0 2 4 8 16

0 0 0 0 3 9 27 81

�xl �x2
l �x3

l �x4
l �xr x2

r �x3
r x4

r

�b� �2b�xl �3b�x2
l �4b�x3

l bþ �2bþxr 3bþx2
r �4bþx3

r

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

a�1
a�2
a�3
a�4
aþ1
aþ2
aþ3
aþ4

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

¼

ui�3 � ui

ui�2 � ui

ui�1 � ui

uiþ2 � uiþ1

uiþ3 � uiþ1

uiþ4 � uiþ1

/� uiþ1 þ ui

hw

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

;

ð36Þ

where the first three equations are generated from u�(x), while the next three equations are generated from
u+(x). The last two equations are the approximation of two interface jump conditions with polynomials
u�(x) and u+(x) at x = a. By inverting the coefficient matrix, the representations of all the eight polynomial
coefficients are solved, and expressions for u�(x) and u+(x) are fully determined.

Unlike the second-order case where each polynomial is used only once in formulating the difference scheme
at either xi or xi + 1, for the fourth-order case, each polynomial are applied twice since there are two irregular
points on each side of the interface, i.e., xi� 1 and xi on the left, and xi + 1 and xi + 2 on the right. These points
are identified since the regular central difference scheme at these points involves the grid point(s) on the dif-
ferent side. In particular, u�(x) will be used to formulate the difference scheme at points xi� 1 and xi, while
u+(x) is used at xi + 1 and xi + 2. Assuming a piecewise continuous b, the difference schemes at two closest irreg-
ular points are
bxðxiÞ
a�1
h
þ bðxiÞ

2a�2
h2
� jðxiÞui ¼ qðxiÞ at xi; ð37Þ

bxðxiþ1Þ
aþ1
h
þ bðxiþ1Þ

2aþ2
h2
� jðxiþ1Þuiþi ¼ qðxiþ1Þ at xiþ1: ð38Þ
At other two irregular points, the difference schemes are more complicated since the derivatives of the poly-
nomials involve more terms



Fig. 4.
which
evalua

Y.C. Zhou, G.W. Wei / Journal of Computational Physics 219 (2006) 228–246 237
bxðxi�1Þ
h

ða�1 � 2a�2 þ 3a�3 � 4a�4 Þ þ
bðxi�1Þ

h2
ð2a�2 � 6a�3 þ 12a�4 Þ � jðxi�1Þui�1 ¼ qðxi�1Þ at xi�1; ð39Þ

bxðxiþ2Þ
h

ðaþ1 þ 2aþ2 þ 3aþ3 þ 4aþ4 Þ þ
bðxiþ2Þ

h2
ð2aþ2 þ 6aþ3 þ 12aþ4 Þ � jðxiþ2Þuiþ2 ¼ qðxiþ2Þ at xiþ2: ð40Þ
It can be concluded from above discussion that at irregular points near the interface, a difference scheme of
arbitrary order can be formulated by following these steps:

1. Definite a polynomial on each side of the interface
u�ðxÞ ¼ ui þ
Xn

k¼1

a�k
hk ðx� xiÞ; ð41Þ

uþðxÞ ¼ uiþ1 þ
Xn

k¼1

aþk
hk ðx� xiþ1Þ; ð42Þ
where n, the order of the polynomial, depends on the global accuracy required. These polynomials are
essentially the approximations of the solution in the vicinity of the interface.

2. Expand each polynomial at the nearest n � 1 grid points to the interface on the same side. The total number
of expansions is therefore 2n � 2.

3. Approximate two interface jump conditions with these polynomials. Differentiation is needed in approxi-
mating [bux], the jump in flux.

4. Compose a 2n · 2n linear algebraic equations system by combining 2n � 2 expansion polynomials and two
discretized interface jump conditions. Solve this linear system by inversion, and the solution is the represen-
tation of polynomials coefficients in terms of the approximation solution at involved grid points and the
given jumps.

5. Approximate the original elliptic equation at all the irregular points by differentiating the polynomials.
Replace the polynomial coefficients with their representations. This gives rise to a finite difference scheme
at the corresponding grid point.

3.2. Two dimensional formalism

The new formulation of the MIB for 2D problems with curved interfaces can be accomplished similarly.
The essential idea is to construct 1D interpolation polynomials, instead of 2D ones. Referring to Fig. 4, we
have two irregular points, xi and xi + 1, along the x-axis for a second order scheme. Two 1D polynomials,
in exactly the same form as Eqs. (23) and (24), are defined
Irregular point (i, j) and the interface. The interface crosses the x-mesh line at (xo,yo). The vertical dash line is the auxiliary line on
three auxiliary points (in empty circle) are defined: (o, j + 2), (o, j + 1) and (o, j) right at (xo,yo). The jumps [u], [bun] and [us] are
ted at (xo,yo).
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u�ðx; yjÞ ¼ a�0 þ
a�1
h
ðx� xiÞ þ

a�2
h2
ðx� xiÞ2; ð43Þ

uþðx; yjÞ ¼ aþ0 þ
aþ1
h
ðx� xiþ1Þ þ

aþ2
h2
ðx� xiþ1Þ2: ð44Þ
These polynomials can be regarded as the 1D approximation of the solution in the vicinity of the interface
along y = yj mesh line. Here, one has a�0 ¼ ui;j and aþ0 ¼ uiþ1;j by definition. To solve for the rest four coeffi-
cients, these two polynomials are to be evaluated at (xi� 1,yj) and (xi + 2,yj), which gives two equations. The
other two equations are obtained from the approximations of interface jump conditions (45) and (46) [35]
½u� ¼ uþ � u�; ð45Þ
½bun� � b� tan h½us� ¼ Cþx uþx þ C�x u�x þ Cþy uþy ; ð46Þ
where h is the angle between the normal vector and the x–axis, Cþx ¼ bþ cos hþ b� tan h sin h;C�x ¼ �b�ðcos hþ
tan h sin hÞ, and Cþy ¼ ðb

þ � b�Þ sin h. The approximation to Eq. (45) is trivial though, special care has to be
taken in treating Eq. (46), which couples two directions. Here we approximate Eq. (46) as
Cþx
h
ðaþ1 � 2aþ2 xrÞ þ

C�x
h
ða�1 þ 2a�2 xlÞ þ Cþy ðpþ1;juþo;j þ pþ1;jþ1uo;jþ1 þ pþ1;jþ2uo;jþ2Þ ¼ ½bun� � b� tan h½us�; ð47Þ
where p is the FD weight in the y-direction, and xl ¼ xo�xi
h ; xr ¼ xiþ1�xo

h . Note that here auxiliary values uþo;j; uo;jþ1

and uo,j+2 are also introduced to calculate uþy as did in fictitious domain formulation [35], where
uþo;j ¼ u�xo;yo
þ ½u� ¼ ðui;j þ a�1 xl þ a�2 x2

l Þ þ ½u�: ð48Þ
The final algebraic system for four polynomial coefficients is
�1 1 0 0

0 0 1 1

�xl �x2
l �xr x2

r
1
h C�x þ Cþy pþ1;jxl

2
h C�x xl þ Cþy pþ1;jx

2
l

1
h Cþx � 2

h Cþx xr

0
BBB@

1
CCCA

a�1
a�2
aþ1
aþ2

0
BBB@

1
CCCA

¼

ui�1;j � ui;j

uiþ2;j � uiþ1;j

/� uiþ1;j þ ui;j

bun½ � � b� tan h½us� � Cþy fpþ1;jðui;j þ ½u�Þ þ pþ1;jþ1uo;jþ1 þ pþ1;jþ2uo;jþ2g

0
BBB@

1
CCCA: ð49Þ
Desirable difference schemes for ux or uxx at two irregular points can be obtained from the direct differentia-
tion of these two polynomials after all of their coefficients are determined. Following a similar procedure, one
can determine polynomials u�(xi,y) and u+(xi,y), which are then used to approximate u�y ; u

�
yy ; u

þ
y and uþyy at

corresponding irregular points.
High order 2D interpolation schemes can be established in a manner similar to what described for 1D high

order schemes. However, for general interfaces with large curvatures, the construction of a high order inter-
polation MIB scheme is subject to the same difficulty as that in the fictitious domain formulation, i.e., there is
no sufficient grid points to support high order polynomials along all the x- and y-directions on one side of an
interface, see x = xi mesh line in Fig. 2. It normally takes four grid points to determine a fourth-order poly-
nomial u�(xi,y), which is required for calculating uy and uyy at four irregular points, (i, j � 2), (i, j � 1), (i, j + 2)
and (i, j + 3), in a fourth-order scheme. One solution to this problem is to make use of two interface intersec-
tion points, which would provide four jump conditions. However, a simple remedy is to make use of other two
polynomials found in the x-direction, namely, u�(x,yj + 2) and u�(x,yj� 1) to calculated the extended function
values at (i, j + 2) and (i, j � 1), respectively. These two extended function values, together with the original
function values ui,j and ui,j+1, as well as two interface jump conditions, can determine u�(xi,y). As usual, this
determination is sought in coupling with the determination of u+(xi,y), whose solution has no additional
problem.
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3.3. Comparison of two formulations

In this subsection, we discuss the similarity and difference of the fictitious domain formulation and the
interpolation formulation. In terms of similarities, both formulations share the same set of irregular points
for a given interface geometry and given order of the scheme. Both approaches utilize only the standard (high
order) central finite difference discretization and the lowest order interface jump conditions. The essential
equivalence between the two formulation would be obvious if the fictitious value formulation is also casted
in polynomial expressions. Referring to Fig. 1, bridged by fictitious value fi + 1, the solution in the left vicinity
of the interface is actually approximated by a Lagrange interpolation polynomial
Table
Compa

nx

20
40
80

160
320
u�ðxÞ ¼
X1

k¼0

Lkui�1þk þ L2fiþ1 ð50Þ
to an accuracy of O(h3) or
u�ðxÞ ¼
X3

k¼0

Lkui�3þk þ L4fiþ1 ð51Þ
to an accuracy of O(h5). These two polynomials, although are not explicitly constructed, are actually approx-
imated in seeking the fictitious values. Moreover, a very important common feature is that, in either 1D or
higher dimensions, both approaches make use of only 1D polynomials. This treatment significantly simplifies
the scheme.

Comparing Eq. (50) with Eq. (23), or Eq. (50) with Eq. (34) it can be found that with the fictitious domain
approach one only need to determine two parameters, i.e., the fictitious values fi and fi + 1, to resolve the
approximate solutions in both the left and the right vicinity of the interface. With the new formulation, how-
ever, one has to solve for all the six polynomial coefficients to determine the approximate solution.

Since approximate polynomials are explicitly determined in the new formulation, they are then directly dif-
ferentiated to provide the approximation to the first and second derivatives in the elliptic equation. In the fic-
titious domain approach, instead of differentiating approximate polynomials implicitly determined with the
first pair of fictitious values fi and fi + 1, a formal central difference scheme involving fi or fi + 1 is adopted at
each irregular point to approximate the partial derivative. Moreover, to support a fourth or higher order
scheme, more fictitious values are needed, and they have to be solved progressively after determining fi and
fi + 1. With the new formulation, however, all the coefficients in the high order polynomials are solved
simultaneously.

Two formulations also differ from each other in dealing with large curvatures. The fictitious domain
approach avoids determining a fictitious value along a discretization direction whenever there is no sufficient
number of grid values along the direction inside an interface. It makes use of grid values in the other direction
to determine the fictitious value. However, the interpolation formulation cannot avoid determining polynomi-
als in all directions at an irregular point because it has to calculate both the x- and y-derivatives at the irregular
point. It therefore makes use of other polynomials to provide function values outside the interface to complete
the determination of each required polynomial. These two approaches might involve different sets of grid val-
ues in dealing with a given situation.
1
rison of two formulations of the MIB method

Fictitious domain formulation Interpolation formulation

2nd 4th 2nd 4th

L1 Order L1 Order L1 Order L1 Order

3.45E � 2 6.79E � 4 3.45E � 2 6.79E � 4
5.76E � 3 2.58 3.48E � 5 4.29 5.76E � 3 2.58 3.48E � 5 4.29
2.12E � 3 1.44 2.33E � 6 3.90 2.12E � 3 1.44 2.33E � 6 3.90
3.51E � 4 2.59 1.49E � 7 3.97 3.51E � 4 2.59 1.49E � 7 3.97
1.32E � 4 1.41 9.43E � 9 3.98 1.32E � 4 1.41 9.43E � 9 3.98
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To complete the comparison of two formulations, a simple 1D Poisson problem is solved with both
approaches. The computational domain is [�1,1] and the interface is located at x = 1/3. To the left of the
interface b = x2 + 1, u(x) = sin(4x) and b = ex, u(x) = cos(4x) in the right subdomain. The jumps at the inter-
face can be calculated accordingly. The convergence tests showing in Table 1 verifies the equivalence of these
two formulations. Here, small difference can be detected if more significant digits were kept. For example, for
nx = 20 the L1 error for the second-order fictitious domain formulation is 3.45332 · 10�2, while for the inter-
polation formulation is 3.45481 · 10�2.
4. Numerical experiments

We conducted a number of numerical experiments to examine the performance of the proposed high order
MIB method, with special care on the order of convergence. Interface problems with general curved geometry
are selected to test robustness of the present method in dealing with large curvatures. Tests are also conducted
on problems with high frequency oscillations and large coefficient jumps. The numerical errors of computa-
tions are measured in the discrete L2 norm
L2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

nx � ny

Xnx

i¼1

Xny

j¼1

ðui;j � ~ui;jÞ2
vuut
or the L1 norm
L1 ¼ max
i¼1;���;nx

max
j¼1;���;ny

jui;j � ~ui;jj;
given an analytical solution ui,j and a computed solution ~ui;j. Here, nx and ny are the numbers of grid points in
the x- and y-direction, respectively. A main-diagonal preconditioned biconjugate gradient stabilized solver is
adopted to solve the linear system.

Example 1. The Poisson equation is defined in a square [�1,1] · [�1,1] with a circular interface
r2 � x2 þ y2 ¼ 1

4. The analytical solution to the equation, the coefficient b, and the inhomogeneous term of
the equation are given as follows
uðx; yÞ ¼
x2 þ y2 � 1; r 6 0:5;

1
4

1� 1
8b� 1

b

� �
þ r4

2
þ r2

� �.
b; otherwise:

(

bðx; yÞ ¼
2; r 6 0:5;

b; otherwise:

�

qðx; yÞ ¼
8:0; r 6 0:5;

8ðx2 þ y2Þ þ 4:0; otherwise:

�

By choosing b = 10, it can be checked that on the interface [u] = 1 and [bun] = �0.75. In particular, it can be
found that the analytical solution is a fourth-order polynomial. Therefore, a fourth-order method should ren-
der a numerical solution of the machine error. The plot in Fig. 5 exactly illustrates this prediction, where the
maximum error is around 10�14.

Example 2. It is generally believed that a high order method usually comes with high resolution, which is
absolutely needed in solving Maxwell’s equations or the Helmholtz equation for high frequency
wave propagation and scattering. To examine the resolution of the proposed method, a Helmholtz-like
equation
r � ðbruðx; yÞÞ þ k2ðx; yÞuðx; yÞ ¼ qðx; yÞ

is considered, where k(x,y) = jr(x,y) is the dielectric function describing macroscopically the properties of the
medium in which the wave propagates. Both b and k are discontinuous at the interface. The analytical solution
to the equation is designed to be highly oscillatory



Fig. 5. The computed solution (left) and the error (right) for the Example 1.

Table
Numer

nx = n

20
40
80

160
320
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uðx; yÞ ¼ x2 þ y2; r 6 0:5;

sinðjxÞ cosðjyÞ; otherwise:

�

where j can be tuned to produce solutions of desired frequency. The computational domain and the interface
are the same as those in Example 1, while
b ¼
10; r 6 0:5;

1; otherwise

�

and
rðx; yÞ ¼
1; r 6 0:5;ffiffiffiffiffi

10
p

; otherwise:

�

Two different frequencies, j = 2 and j = 12, are considered as in Table 2 where the solution of the present
fourth-order scheme is compared with that of the second-order MIB scheme. It is observed that the order of
convergence agrees with the theoretical analysis for both schemes. Also observed is that the low frequency
solution can be well approximated by both schemes. However, for the high frequency case, considerable dif-
ference can be found in two schemes. In particular, for the low frequency case, a sparse mesh (20 · 20) is suf-
ficient for both schemes to produce a result of moderate accuracy, i.e., around 10�3. For the high frequency
problem, since the solution admits large gradients and is anisotropic, one has to use a very dense mesh
(320 · 320) to resolve the fast variation in the solution. It is noted that by using the fourth-order MIB scheme,
an 80 · 80 mesh can provide a sufficient resolution (see Fig. 6). It is therefore anticipated that with the pro-
posed high-order interface method, significant saving on computing time can be achieved for problems that
involve both material interface and high frequency oscillations.
2
ical convergence test and accuracy tests for Example 2

y j = 2 j = 12

4th MIB 2nd MIB 4th MIB 2nd MIB

L1 Order L1 Order L1 Order L1 Order

3.91E � 5 3.51E � 3 2.13E � 1 7.80E � 1
1.04E � 5 1.91 1.41E � 3 1.32 2.86E � 2 1.90 1.50E � 1 2.34
6.34E � 7 4.04 3.70E � 4 1.93 1.92E � 3 4.55 3.31E � 2 2.18
4.37E � 8 3.86 1.01E � 4 1.87 2.04E � 4 4.32 1.06E � 2 1.64
2.78E � 9 3.97 2.36E � 5 2.10 8.43E � 6 4.60 1.95E � 3 2.44
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Example 3. We consider the Poisson equation with a computational domain [�1,1] · [�1,1] and an ellipse
interface
Table
Nume

nx = n

40
80

160
320
x
18=27

� 	2

þ y
10=27

� 	2

¼ 1:
The analytical solution and the coefficient b are given as follows
uðx; yÞ ¼
ex cosðyÞ; inside C;

5 exp �x2 � y2

2

� �
; otherwise:

(

bðx; yÞ ¼
b; inside C;

1; otherwise:

�

Two cases are considered, one with b = 10 and the other with b = 1000. The latter shows a strong discon-
tinuity in the coefficient b and demands more iterations in solving the linear system as it is ill-conditioned due
to the large jump in b. The lower accuracy for the case with b = 1000 can be attributed to the larger jump in
the coefficient (see Table 3).

To validate the asymptotic behavior of the approximation error with the increasing of the jump in b, a
series of b+ are chosen for numerical tests. The results are collected in Table 4. It can be seen that for moderate
magnitude the numerical error is increasing while for large jumps the error is almost a constant (see Fig. 7).

Example 4. This example was introduced in Ref. [25], and is adopted here to examine the flexibility of pro-
posed scheme in dealing with complex interface. The analytical solution to the equation, the coefficient b
and a jigsaw puzzle-like interface C are given below
uðx; yÞ ¼ exðy2 þ x2 sinðyÞÞ; inside C;

�ðx2 þ y2Þ; otherwise:

�

bðx; yÞ ¼
1; inside C;

10; otherwise:

�

C :
xðhÞ ¼ 0:6 cosðhÞ � 0:3 cosð3hÞ;
yðhÞ ¼ 1:5þ 0:7 sinðhÞ � 0:07 sinð3hÞ þ 0:2 sinð7hÞ:

�

A discretization of the interface is plotted in Fig. 3. The computed solution and the error for a 100 · 100 mesh
are plotted in Fig. 8 and the numerical error in terms of L2 norm are collected in Table 5, together with the
data of the second-order counterpart. We note that the predicted convergence rate for both methods are ver-
ified, whereas the fourth-order method gives a much more accurate result. The maximum error occurs at the
irregular points near the interface where the local truncation error is one-order lower than that at regular
points.

Example 5. This is another standard test case for testing numerical methods designed for solving elliptic inter-
face problems. The interface is parametrized with the polar angle h, as
3
rical convergence test and accuracy tests for Example 3

y b = 10 b = 1000

4th MIB 2nd MIB 4th MIB 2nd MIB

L1 Order L1 Order L1 Order L1 Order

3.92E � 5 5.21E � 3 6.19E � 3 2.76E � 2
2.92E � 6 3.75 1.49E � 3 1.8 2.65E � 4 4.55 7.52E � 3 1.9
1.70E � 7 4.10 3.75E � 4 2.0 1.33E � 5 4.32 2.17E � 3 2.0
8.57E � 9 4.31 7.80E � 5 2.3 6.73E � 7 4.30 4.84E � 4 2.2



Fig. 6. The computed solution (left) and the error (right) for the Example 2.

Table 4
Robustness tests of a high order MIB scheme

b+ 10 20 100 500 103 104 105 108

L1 3.92E � 5 7.10E � 5 1.89E � 4 3.04E � 4 3.28E � 4 3.53E � 4 3.56E � 4 3.56E � 4

b� = 1. nx = ny = 40.

Fig. 7. The computed solution (left) and the error (right) for Example 3. nx = ny = 40.
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r ¼ 1

2
þ sinðhÞ

7
:

The exact solution to the problem can be arbitrarily designed. Here, we choose
uðx; yÞ ¼
expðx2 þ y2Þ; inside C;

0:1ðx2 þ y2Þ2 � 0:01 lnð2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
Þ; otherwise:

(

bðx; yÞ ¼
1; inside C;

10; otherwise:

�

This solution also prescribes the Dirichlet boundary condition of the problem. The non-homogeneous term of
the Poisson equation can also be derived from the exact solution. Fig. 9 plots the computed solution and the



Fig. 8. The computed solution (left) and the error (right) for Example 4. nx = ny = 100.

Table 5
Numerical convergence test for Example 4

nx = ny 4th MIB 2nd MIB

L2 Order L2 Order

100 2.10E � 8 3.78E � 5
200 1.54E � 9 3.77 1.06E � 5 1.83
400 5.11E � 11 3.95 2.49E � 6 2.09

Fig. 9. The computed solution (left) and the error (right) for Example 5. nx = ny = 100.

Table 6
Numerical convergence test for Example 5

nx = ny 4th MIB 2nd MIB

L2 Order L2 Order

100 1.29E � 7 5.03E � 5
200 1.17E � 8 3.46 1.35E � 5 1.90
400 7.09E � 10 4.04 3.41E � 6 1.99
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error with a mesh of 100 · 100. Table 6 shows the results of the numerical accuracy tests on three successively
refined meshes, in comparing with the second-order MIB method.
5. Conclusion

As a part of our effort to construct high order numerical methods for solving elliptic equations with discon-
tinuous coefficients and singular sources, we introduce a new concept to disassociate the domain extension
from the discretization in the matched interface and boundary (MIB) method [34,35]. The MIB is a systematic
approach to smoothly extend the solution across the interface by enforcing the lowest order interface jump
conditions. The standard high order central finite different discretization is then employed in the whole
domain without the loss of accuracy. The MIB method is of arbitrarily high order in principle as the jump
conditions are iteratively used. However, a domain extension practice, i.e., the association of the discretization
and the domain extension, used in the previous MIB method [35] prevents it from attaining high order con-
vergence for interfaces involving large curvatures. The present work overcomes this difficulty by allowing the
extended domain to be utilized for discretization in arbitrary directions regardless how the domain was
extended. We show that the improved MIB method is truly high order for general interface geometry by exten-
sive numerical experiments. Some first known results of fourth-order convergence are observed for a set of
benchmark test examples involving irregular geometry. The robustness of the proposed method against large
jumps in the coefficient amplitude is analyzed and validated. To improve the understanding of the MIB and
other potential high order methods for elliptic interface problems, we propose an alternative interpolation for-
mulation of the MIB method. We show that the new formulation is essentially equivalent to the improved
MIB method. The generalization of the MIB to three dimensions and the construction of fast algebraic solvers
are under our consideration.
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